Sunday 28 September 2014

Photovoltaics

Photovoltaics (PV) is a method of generating electrical power by converting sunlight into direct current electricity using semiconducting materials that exhibit the photovoltaic effect. A photovoltaic system employs solar panels composed of a number of solar cells to supply usable solar power. Power generation from solar PV has long been seen as a clean sustainable[1] energy technology which draws upon the planet’s most plentiful and widely distributed renewable energy source – the sun. The direct conversion of sunlight to electricity occurs without any moving parts or environmental emissions during operation. It is well proven, as photovoltaic systems have now been used for fifty years in specialized applications, and grid-connected PV systems have been in use for over twenty years.[2]

Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaics has declined steadily since the first solar cells were manufactured,[2][3] and the levelised cost of electricity (LCOE) from PV is competitive with conventional electricity sources in an expanding list of geographic regions.[4] Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries.[5] With current technology, photovoltaics recoup the energy needed to manufacture them in 1.5 (in Southern Europe) to 2.5 years (in Northern Europe).[6]

Solar PV is now, after hydro and wind power, the third most important renewable energy source in terms of globally installed capacity. More than 100 countries use solar PV. Installations may be ground-mounted (and sometimes integrated with farming and grazing) or built into the roof or walls of a building (either building-integrated photovoltaics or simply rooftop).

In 2013, the fast-growing capacity of worldwide installed solar PV increased by 38 percent to 139 gigawatts (GW). This is sufficient to generate at least 160 terawatt hours (TWh) or about 0.85 percent of the electricity demand on the planet. China, followed by Japan and the United States, is now the fastest growing market, while Germany remains the world's largest producer, contributing almost 6 percent to its national electricity demands.[7][8][9]
The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and from "volt", the unit of electro-motive force, the volt, which in turn comes from the last name of the Italian physicist Alessandro Volta, inventor of the battery (electrochemical cell). The term "photo-voltaic" has been in use in English since 1849.[10]
Solar cells
Solar cells produce electricity directly from sunlight
Global solar potential
Main article: Solar cell

Photovoltaics are best known as a method for generating electric power by using solar cells to convert energy from the sun into a flow of electrons. The photovoltaic effect refers to photons of light exciting electrons into a higher state of energy, allowing them to act as charge carriers for an electric current. The photovoltaic effect was first observed by Alexandre-Edmond Becquerel in 1839.[11][12] The term photovoltaic denotes the unbiased operating mode of a photodiode in which current through the device is entirely due to the transduced light energy. Virtually all photovoltaic devices are some type of photodiode.

Solar cells produce direct current electricity from sun light which can be used to power equipment or to recharge a battery. The first practical application of photovoltaics was to power orbiting satellites and other spacecraft, but today the majority of photovoltaic modules are used for grid connected power generation. In this case an inverter is required to convert the DC to AC. There is a smaller market for off-grid power for remote dwellings, boats, recreational vehicles, electric cars, roadside emergency telephones, remote sensing, and cathodic protection of pipelines.

Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide.[13] Copper solar cables connect modules (module cable), arrays (array cable), and sub-fields. Because of the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years.[14][15][16]

Solar photovoltaics power generation has long been seen as a clean energy technology which draws upon the planet’s most plentiful and widely distributed renewable energy source – the sun. The technology is “inherently elegant” in that the direct conversion of sunlight to electricity occurs without any moving parts or environmental emissions during operation. It is well proven, as photovoltaic systems have now been used for fifty years in specialised applications, and grid-connected systems have been in use for over twenty years.

Cells require protection from the environment and are usually packaged tightly behind a glass sheet. When more power is required than a single cell can deliver, cells are electrically connected together to form photovoltaic modules, or solar panels. A single module is enough to power an emergency telephone, but for a house or a power plant the modules must be arranged in multiples as arrays.

Photovoltaic power capacity is measured as maximum power output under standardized test conditions (STC) in "Wp" (Watts peak).[17] The actual power output at a particular point in time may be less than or greater than this standardized, or "rated," value, depending on geographical location, time of day, weather conditions, and other factors.[18] Solar photovoltaic array capacity factors are typically under 25%, which is lower than many other industrial sources of electricity.[19]

1 comments: