A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption, meaning the total amount of energy used by the building on an annual basis is roughly equal to the amount of renewable energy created on the site. These buildings still produce greenhouse gases because on cloudy (or non-windy) days, at night when the sun isn't shining, and on short winter days, conventional grid power is still the main energy source. Because of this, most zero net energy buildings still get half or more of their energy from the grid. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses".
Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases.[1][2] The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero-energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.
Most zero-energy buildings use the electrical grid for energy storage but some are independent of grid. Energy is usually harvested on-site through a combination of energy producing technologies like solar and wind, while reducing the overall use of energy with highly efficient HVAC and lighting technologies. The zero-energy goal is becoming more practical as the costs of alternative energy technologies decrease and the costs of traditional fossil fuels increase.
The development of modern zero-energy buildings became possible not only through the progress made in new energy and construction technologies and techniques, but it has also been significantly improved by academic research, which collects precise energy performance data on traditional and experimental buildings and provides performance parameters for advanced computer models to predict the efficacy of engineering designs. Zero Energy Building is considered as a part of smart grid. Some advantages of these buildings are as follow:
Integration of renewable energy resources
Integration of plug-in electric vehicles
Implementation of zero-energy concepts
The zero-energy concept allows for a wide range of approaches due to the many options for producing and conserving energy combined with the many ways of measuring energy (relating to cost, energy, or carbon emissions).
Despite sharing the name "zero net energy", there are several definitions of what the term means in practice, with a particular difference in usage between North America and Europe.[3]
Zero net site energy use
In this type of ZNE, the amount of energy provided by on-site renewable energy sources is equal to the amount of energy used by the building. In the United States, “zero net energy building” generally refers to this type of building.
Zero net source energy use
This ZNE generates the same amount of energy as is used, including the energy used to transport the energy to the building. This type accounts for losses during electricity transmission. These ZNEs must generate more electricity than zero net site energy buildings.
Net zero energy emissions
Outside the United States and Canada, a ZEB is generally defined as one with zero net energy emissions, also known as a zero carbon building or zero emissions building. Under this definition the carbon emissions generated from on-site or off-site fossil fuel use are balanced by the amount of on-site renewable energy production. Other definitions include not only the carbon emissions generated by the building in use, but also those generated in the construction of the building and the embodied energy of the structure. Others debate whether the carbon emissions of commuting to and from the building should also be included in the calculation.
Net zero cost
In this type of building, the cost of purchasing energy is balanced by income from sales of electricity to the grid of electricity generated on-site. Such a status depends on how a utility credits net electricity generation and the utility rate structure the building uses.
Net off-site zero energy use
A building may be considered a ZEB if 100% of the energy it purchases comes from renewable energy sources, even if the energy is generated off the site.
Off-the-grid
Off-the-grid buildings are stand-alone ZEBs that are not connected to an off-site energy utility facility. They require distributed renewable energy generation and energy storage capability (for when the sun is not shining, wind is not blowing, etc.). An energy autarkic house is a building concept where the balance of the own energy consumption and production can be made on an hourly or even smaller basis. Energy autarkic houses can be taken off-the-grid.
Net zero-energy building
Based on scientific analysis within the joint research program “Towards Net Zero Energy Solar Buildings” [4] a methodological framework was set up which allows different definitions, in accordance with country’s political targets, specific (climate) conditions and respectively formulated requirements for indoor conditions: The overall conceptual understanding of a Net ZEB is an energy efficient, grid connected building enabled to generate energy from renewable sources to
Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases.[1][2] The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero-energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.
Most zero-energy buildings use the electrical grid for energy storage but some are independent of grid. Energy is usually harvested on-site through a combination of energy producing technologies like solar and wind, while reducing the overall use of energy with highly efficient HVAC and lighting technologies. The zero-energy goal is becoming more practical as the costs of alternative energy technologies decrease and the costs of traditional fossil fuels increase.
The development of modern zero-energy buildings became possible not only through the progress made in new energy and construction technologies and techniques, but it has also been significantly improved by academic research, which collects precise energy performance data on traditional and experimental buildings and provides performance parameters for advanced computer models to predict the efficacy of engineering designs. Zero Energy Building is considered as a part of smart grid. Some advantages of these buildings are as follow:
Integration of renewable energy resources
Integration of plug-in electric vehicles
Implementation of zero-energy concepts
The zero-energy concept allows for a wide range of approaches due to the many options for producing and conserving energy combined with the many ways of measuring energy (relating to cost, energy, or carbon emissions).
Despite sharing the name "zero net energy", there are several definitions of what the term means in practice, with a particular difference in usage between North America and Europe.[3]
Zero net site energy use
In this type of ZNE, the amount of energy provided by on-site renewable energy sources is equal to the amount of energy used by the building. In the United States, “zero net energy building” generally refers to this type of building.
Zero net source energy use
This ZNE generates the same amount of energy as is used, including the energy used to transport the energy to the building. This type accounts for losses during electricity transmission. These ZNEs must generate more electricity than zero net site energy buildings.
Net zero energy emissions
Outside the United States and Canada, a ZEB is generally defined as one with zero net energy emissions, also known as a zero carbon building or zero emissions building. Under this definition the carbon emissions generated from on-site or off-site fossil fuel use are balanced by the amount of on-site renewable energy production. Other definitions include not only the carbon emissions generated by the building in use, but also those generated in the construction of the building and the embodied energy of the structure. Others debate whether the carbon emissions of commuting to and from the building should also be included in the calculation.
Net zero cost
In this type of building, the cost of purchasing energy is balanced by income from sales of electricity to the grid of electricity generated on-site. Such a status depends on how a utility credits net electricity generation and the utility rate structure the building uses.
Net off-site zero energy use
A building may be considered a ZEB if 100% of the energy it purchases comes from renewable energy sources, even if the energy is generated off the site.
Off-the-grid
Off-the-grid buildings are stand-alone ZEBs that are not connected to an off-site energy utility facility. They require distributed renewable energy generation and energy storage capability (for when the sun is not shining, wind is not blowing, etc.). An energy autarkic house is a building concept where the balance of the own energy consumption and production can be made on an hourly or even smaller basis. Energy autarkic houses can be taken off-the-grid.
Net zero-energy building
Based on scientific analysis within the joint research program “Towards Net Zero Energy Solar Buildings” [4] a methodological framework was set up which allows different definitions, in accordance with country’s political targets, specific (climate) conditions and respectively formulated requirements for indoor conditions: The overall conceptual understanding of a Net ZEB is an energy efficient, grid connected building enabled to generate energy from renewable sources to
Awesome ! i really found very informative article here
ReplyDeleteInstalling Solar Panels On Roof
Solar Arizona